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Abstract. The time and space assembly line balancing problem (TSALBP) is
a realistic multiobjective version of assembly line balancing industrial problems
involving the joint optimization of conflicting criteria such as the cycle time, the
number of stations, and the area of these stations. However, the existing problem
formulation does not consider the industrial scenario where the demand of a set of
mixed products is variable and uncertain. In this contribution we introduce a novel
robustness function to measure the robustness of the line configuration when the
production plans demand changes. The function is used as additionala posteriori
information for the non-dominated solutions found by an advanced multiobjec-
tive genetic algorithm. Because of their independence, these robustness functions
can be used in conjunction with any other multiobjective metaheuristic. Results
show how the use of the robustness function can help the decision maker to se-
lect robust non-dominated solutions when future demand conditions vary in the
assembly line configurations.

1 Introduction

An assembly line is made up of a number of workstations, arranged either in series or
in parallel. Since the manufacturing of a production item is divided into a set of tasks
which require an operation time for their execution, a usual and difficult problem, called
assembly line balancing (ALB), is to determine how these tasks can be assigned to the
stations fulfilling certain restrictions such as precedence relations. The final aim of ALB
is to get an optimal assignment of subsets of tasks to the stations of the plant (1, 2). An
excellent review on ALB and the existing solving methods for the different problems
is given in (3). Within ALB, a well-known family of problems is the simple assembly
line balancing problem (SALBP) (4, 5, 6). The SALBP only considers the assignment
of each task to a single station in such a way that all the precedence constraints are
satisfied and no station workload time is greater than the line cycle time.

⋆⋆ This work has been supported by Ministerio de Economı́a y Competitividad under project
SOCOVIFI2 (TIN2012-38525-C02-01 and TIN2012-38525-C02-02), and under PROTHIUS-
III: DPI2010-16759, both including EDRF funding.



As a result of the observation of the ALB operation in an automotive Nissanplant
from Barcelona (Spain), (7) recently proposed a SALBP extension aiming to design a
more realistic ALB model. They considered an additional space constraint to get a sim-
plified but closer version to real-world situations, defining the time and space assembly
line balancing problem (TSALBP). The TSALBP presents eight variants depending on
three optimization criteria:m (the number of stations),c (the cycle time), andA (the
area of the stations). In this paper we tackle the TSALBP-m/A variant4 which tries to
jointly minimize the number of stations and their area for a given product cycle time, a
complex and realistic multicriteria problem in the automotive industry.

The multicriteria nature of the TSALBP-m/A favoured the application of multi-
objective meta-heuristics (MOMHs) such as multiobjective ant colony optimization
(MOACO) (8) or evolutionary multiobjective optimization (EMO) (9). Assembly lines
are generally balanced for producing mixed products and their demand is not usually
fixed and certain. When the assembly line is devoted to produce mixed products in a
given sequence, the operation times of the required tasks are obtained from the average
value of the different products and their demand. This is a problematic rough estimate
of the actual operation times. If the demand changes, the operation times also change
and a re-balancing could be necessary for the configuration.

Robustness can be applied to many components in an optimization process: noise
in constraints, objective function, or uncertainties in data variables (10, 11). Real-world
applications, as ALB, normally involve uncertainties because of operating conditions
or manufacturing process (12). In our case, the interest lies on measuring the robust-
ness of a specific operating condition, i.e. the operation times originated by the mixed
products demand. In this work, a robustness function is defined based on the overload-
ing production plans which occur when the demand changes and the line configuration
is set. The latter robustness measure is used as additionala posteriori information as-
sociated to each non-dominated solution returned by the MOO method. Theadvanced
TSALBP-NSGA-II is selected as the MOO method for the robustness experiments of this
study because of the best performance of the metaheuristics with respect to others (9).
However, the robustness functions can be applied to any other MOO method.

The rest of the paper is structured as follows. In Section 2, the TSALBP-m/A formu-
lation and the uncertain demand scenario modelled by production plans are explained.
Then, the metaheuristic applied for solving the TSALBP-m/A, theadvanced TSALBP-
NSGA-II, is described in Section 3. The numerical robustness function for assembly line
balancing is given in Section 4. The experimentation results are discussed in Section 5.
Finally, we present some concluding remarks in Section 6.

2 Demand variation in the TSALBP-m/A for mixed product
products

We first introduce the TSALBP-m/A (Section 2.1) and then the real scenario of having
a mixed products with changing demand (Section 2.2).

4 Originally, this TSALBPvariant is referred as TSALBP-1/3 (7). This new notation is intro-
duced in this work for a better understanding.
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2.1 Time and space assembly line balancing problem

The manufacturing of aproduction item is divided into a setJ of n tasks. Each task
j requires an operation time for its executiontj > 0 that is determined as a function
of the manufacturing technologies and the employed resources. Each stationk (k =
1, 2, ...,m) is assigned to a subset of tasksSk (Sk ⊆ J), called workload. Each taskj
can only be assigned to a single stationk.

Each taskj has a set of direct “preceding tasks”Pj which must be accomplished
before starting it. These constraints are normally represented by means of an acyclic
precedence graph, whose vertices stand for the tasks and where a directed arc(i, j)
indicates that taski must be finished before starting taskj on the production line. Thus,
taskj cannot be assigned to a station that is ordered before the one where taski was
assigned. Each stationk also presents a station workload timet(Sk) that is equal to the
sum of the tasks’ processing time assigned to the stationk. SALBP focuses on grouping
tasks in workstations by an efficient and coherent way.

In this simplistic model there is a need of introducing space constraints in assembly
lines’ design based on two main reasons: (a) the length of the workstation is limited in
the majority of the situations, and (b) the required tools and components to be assembled
should be distributed along the sides of the line. Hence, an area constraint may be
considered by associating a required areaaj to each taskj and an available areaAk to
each stationk that, for the sake of simplicity, we shall assume it to be identical for every
station and equal toA = maxk=1,2,...,mAk. Thus, each stationk requires a station area
a(Sk) that is equal to the sum of areas required by the tasks assigned to stationk.

This leads us to a new family of problems called TSALBP (7). It may be stated as:
given a set ofn tasks with their temporaltj and spatialaj attributes (1≤ j ≤ n) and
a precedence graph, each task must be assigned to a single station such that: (i) every
precedence constraint is satisfied, (ii) no station workload time (t(Sk)) is greater than
the cycle time (c), and (iii) no area required by any station (a(Sk)) is greater than the
available area per station (A).

TSALBP presents eight variants depending on three optimization criteria:m (the
number of stations),c (the cycle time) andA (the area of the stations). Within these
variants there are four multiobjective problems and we will tackle one of them, the
TSALBP-m/A. It consists of minimising the number of stationsm and the station area
A, given a fixed value of the cycle timec, mathematically formulated as follows:

f0(x) = m =

UBm
∑

k=1

max
j=1,2,...,n

xjk, (1)

f1(x) = A = max
k=1,2,...,UBm

n
∑

j=1

ajxjk, (2)

whereUBm is the upper bound for the number of stationsm, aj is the area information
for taskj, xjk is a decision variable taking value 1 if taskj is assigned to stationk, and
n is the number of tasks.

We chose this variant because it is realistic in the automotive industry since the
annual production of an industrial plant (and therefore, the cycle timec) is usually
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set by some market objectives. For more information about the problem we refer the
interested readerto (8; 13).

2.2 Production plans for modelling changing demand

The latter TSALBP-m/A formulation assumes both a constant demand and fixed oper-
ation timestj . However, real assembly lines are normally employed to assemble more
than one single product, and when the demand of each product changes, the operation
times of the tasks change in consequence. The demand of a set of mixed products is
defined by means of production plans. In this work, the engine assembly line of the
Nissan Spanish Industrial Operations (NSIO) plant is the chosen uncertain environment
to define the different production plans.

Nine different engines are assembled in the main line of the NSIO plant,m1, . . . ,m9,
having different destinations and assembly characteristics. The first three engine prod-
ucts are built for4 × 4 vehicles; productsm4 andm5 are for VANs; and the remaining
four products are used by medium tonnage trucks. When demand is balanced (identical
for the nine products) and the cycle time is 3 minutes, the assembly line is divided into
21 workstations having an average lengthAk of 4 meters each.

In (7), authors grouped the primary operations of this assembly line in the so called
Nissan TSALBP instance having 140 tasks. For each type of engine, operation times
change. In Table 1 the operation times of five tasks are listed for illustration. The average
operation time when having a balanced demand for the nine products is also shown in
thet-average column.

Table 1. Operation times and average time for five tasks belonging to the NSIO engine assembly
line.

task m1 m2 m3 m4 m5 m6 m7 m8 m9 t-average
1 64.8 61.2 60 54 58.8 55.2 63 66 57 60
3 18.4 18 20 19.6 19 21.6 21 20.4 22 20
5 19 19.6 18.4 20 21 20.4 18 21.6 22 20
8 9.8 9 10.5 10.8 9.5 11 9.2 10 10.2 10
9 20 19.6 19 18 20.4 18.4 21.6 21 22 20

Of course, it is difficult to always have the same uniform demand for all the engines
within a global demand. Although the line is supposed to have a fixed daily production
of, for instance, 270 products, the line should be capable of producing the required
products for the specific product demand of a given production plan. In other words,
the production plan of the 270 engines is not constant. Then, the goal is to have an
assembly line configuration that is robust enough for different production plans.

There are currently 23 production plans for the nine engines and one working day at
the NSIO. Each program corresponds to a set of operation times biased by the demand
of each of the nine products. We have grouped them into seven categories according to
the type of engine demand. The seven representative production plans, one per category,
are shown in Table 2. Definitely, the demand variation of the production plan for mixed
products conditions the average operation times of the 140 assembly line tasks. In that
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case, a re-balancing of the assembly line could be necessary. For example, task1 has
operation times of 64.8, 61.2, 60, 54, 58.8, 55.2, 63, 66, and 57 seconds for products
m1 to m9, respectively. On the other hand, production plan #12 has a demand of 24, 23,
23, 45, 45, 28, 28, 27, and 27 products for each of the engine products. Consequently,
the average time for task 1 in the latter plan is 59.44 seconds (= (64.8 × 24 + 61.2 ×
23 + · · · + 66 × 27 + 57 × 27)/270) in comparison with the 60 seconds needed by
production plan #1.

Table 2. Production units of the engine models for each production plan.

Production plans
Family Product# 1 #2 # 3 # 6 # 9 # 12 # 18
4 x 4 m1 30 30 10 50 70 24 60

m2 30 30 10 50 70 23 60
m3 30 30 10 50 70 23 60

VAN m4 30 45 60 30 15 45 30
m5 30 45 60 30 15 45 30

Trucks m6 30 23 30 15 8 28 8
m7 30 23 30 15 8 28 8
m8 30 22 30 15 7 27 7
m9 30 22 30 15 7 27 7

The selected representative production plans are used in this work to presentad-
ditional information to the decision maker (DM) about how robust a new assembly
line configuration is under demand changes, i.e. how good it is with respect to those
changes.

3 Advanced NSGA-II-based approach for the TSALBP-m/A

This design is based on the original NSGA-II search scheme (14) with an appropriate
representation and more effective operators are used to solve the TSALBP-m/A. The al-
gorithm will be referred asadvanced TSALBP-NSGA-II because of its problem-specific
design and potential application to other TSALBP variants (9). The main features and
operators of theadvanced TSALBP-NSGA-II are described in the next subsections.

3.1 Representation scheme

The allocation of tasks among stations is made by employing separators. Separators
are thus dummy genes which do not represent any specific task and they are inserted
into the list of genes representing tasks. In this way, they define groups of tasks being
assigned to a specific station. The maximum possible number of separators isn−1 (with
n being the number of tasks), as it would correspond to an assembly line configuration
with n stations, each one composed of a single task. Tasks are encoded using numbers
in {1, . . . , n}, as in the previous representation, while separators take values in{n +
1, . . . , 2 · n − 1}. Hence, the genotype is again an order-based representation.

The number of separators included in the genotype is variable and it depends on the
number of existing stations in the current solution. Therefore, the algorithm works with
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Fig. 1. Coding scheme and crossover example. Separators are those genes coloured.

a variable-length codingscheme, although its order-based representation nature avoids
the need of any additional mechanism to deal with this issue. The maximum size of the
chromosome is2 · n − 1 to allow the presence of separators for the maximum number
of possible stations. On the other hand, the representation scheme ensures the encoded
solutions are feasible with respect to the precedence relations constraints. However, the
cycle time limitation could be violated and it will be a task of the genetic operators to
ensure feasibility with respect to that constraint. Figure 1 shows an example of the new
coding scheme.

3.2 The crossover operator

As our representation is order-based, the crossover operator can be designed from a
classical order-based one. Crossover operators of the latter kind which have been sug-
gested in the literature include partially mapped crossover (PMX), order crossover, or-
der crossover # 2, position based crossover, and cycle crossover, among others (15). We
have selected one of the most extended ones, PMX, which has been already used in
other genetic algorithm implementations for the SALBP (for example in (16)).

PMX generates two offspring from two parents by means of the following proce-
dure: a) two random cut points are selected, b) for the first offspring, the genes outside
the random points are copied directly from the first parent, and c) the genes inside the
two cut points are copied but in the order they appear in the second parent. The same
mechanism is followed up with the second offspring but with the opposite parents.
Thanks to our advanced coding scheme and to the use of a permutation-based crossover,
the feasibility of the offspring with respect to precedence relations is assured. See Fig-
ure 1 where an example of the operator is shown. In addition, a repair operator must be
applied for each offspring after crossover.

3.3 Mutation operator

A mutation operator has been specifically designed and applied uniformly to the se-
lected individuals of the population. It is based on reordering a part of the sequence of
tasks and reassigning them to stations. It will be called scramble mutation operator.

The scramble mutation operator works as follows: after choosing two points ran-
domly, the tasks between those points are scrambled forming a new sequence of tasks
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in such a way the mutated solution keeps on being feasible with respect to the prece-
dence relations.The existing separators among the two mutation points are ignored and
a new reallocation of those tasks is considered by randomly generating new separator
locations within the task sequence.

4 Evaluating robust solutions for assembly line balancing when
demand is uncertain

Solving the TSALBP when the mixed products demand is uncertain belongs to the ro-
bust optimization case where the operating conditions change after the optimal solution
is found (17). In our case, the operating conditions are the operation times originated
by the different mixed products demands represented by the production plans of Sec-
tion 2.2. The overall goal is to find a set of non-dominated solutions for the TSALBP-
m/A and calculate their robustness for all the possible production plans. In the next
paragraphs we will present our proposal for evaluating this robustness.

Let E be the set of possible production plans based on the demand variation and
ε0 a reference production plan, our evaluation proposal is based on determining the
workload of the setK of stations of an assembly line configuration in the plans ofE.

First, beingS0

k the tasks assignment to the stationk in ε0 (normally, the balanced
plan), the workload of this stationk is obtained for all the production plansε ∈ E:
t(S0

k, ε).
Then, the relative station overloads with respect to the available cycle timec are

calculated for all the existing production plansε by applying Equation 3.

ω(S0

k, ε) =
max{0, t(S0

k , ε) − c}

c
∀k ∈ K,∀ε ∈ E. (3)

From these overload values, the average and maximum station overload values are
also calculated through Equations 4 and 5:

ω(S0

k) = ωk =
1

|E|

|E|
∑

ε=1

ω(S0

k, ε) ∀k ∈ K, (4)

ωmax(S0

k) = max
ε∈E

{ω(S0

k, ε)} ∀k ∈ K. (5)

Analogously, the average and maximum overloading values for each production
plan are obtained by applying Equations 6 and 7:

ω(ε) =
1

|K|

|K|
∑

k=1

ω(S0

k, ε) ∀ε ∈ E, (6)

ωmax(ε) = max
k∈K

{ω(S0

k, ε)} ∀ε ∈ E. (7)

The latter values allow us to define and calculate our proposed robustness func-
tion. This is based on counting the number of overloaded stations and/or the number
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of overloading production plans. Given a stationk ∈ K, a production planε ∈ E, a
configurationline (S0

1
, S0

2
, ..., S0

m) for a reference production planε0, and a cycle time
c, we can state that there is an overload in(k, S0

k, ε, c) iff:

t(S0

k, ε) > c ⇔ ω(S0

k, ε) > 0 ∀k ∈ K,∀ε ∈ E. (8)

Associated to the concept of overload, the set of total overloads can be defined as
follows:

D = {∀ε ∈ E ∧ ∀k ∈ K | ω(S0

k, ε) > 0}. (9)

Finally and taking into account the setD, a robustness functionR3 can be defined in
Equation 10. This will be the robustness function to be used in this study and represents
the total number of overloads rate.

R3 =
|D|

|E||K|
∈ [0, 1] (10)

5 Experiments

In this sectionwe present the results of the experimentation and the analysis of them.
The parameters of theadvanced TSALBP-NSGA-II are presented in Table 3. The al-
gorithm and the robustness function was applied to three TSALBP real-like instances
(P1, P2 and P4) which have been created by the NTIGen software, publicly available
athttp://www.prothius.com/TSALBP.

Table 3. Used parameter values for theadvanced TSALBP-NSGA-II.

Parameter Value Parameter Value

Random seed 1212 Stopping criteria 300 s
Population size 100 Ishibuchi’ssimilarity 10

based matingγ, δ values
Crossover probability 0.8 Mutation probability 0.1

α values for
scramble mutation {0, 0.8}

The obtained results of the robustness function for the non-dominated solutions are
presented inTable 2. The first instance tackled by the algorithm is P1 (first table of
Figure 2) where only two non-dominated solutions are found. However, even when
having small non-dominated solution sets, the robustness information is important for
the DM. Solution #2 reports robustness value ofR3 = 0.12. This value means that,
when demand varies, the assembly line should support that a 12% of the stations are
overloaded (R3). Solution #2 is thus less robust than solution #1.
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P2 is the original Nissan instance having 140 tasks. The number of non-dominated
solutions obtained bythe algorithm is five (see second table of Figure 2). The numer-
ical value ofR3 allows us to conclude that solutions #1 and #2, those with objective
values(19, 5) and(18, 6.09), respectively, are less robust than the remainder when de-
mand changes. Then, if the number of stations (and then, workers) is not restricted, the
best approach in terms of robustness is always choosing a solution with more than 19
stations.

There are seven non-dominated solutions for instance P4 (third table of Figure 2).
Among them, there are two solutions which are less robust than the remainder. These are
solutions #1 and #2 with 15 and 16 stations, respectively. In the latter pair of solutions,
the 11% and 5.2% of the stations are overloaded by different production plans (R3

function).

P1
Sols. R3

S1 0.01
S2 0.12

P2
Sols. R3

S1 0.139
S2 0.149
S3 0.092
S4 0.083
S5 0.029

P4
Sols. R3

S1 0.111
S2 0.052
S3 0.03
S4 0.046
S5 0.017
S6 0.033
S7 0.032

Fig. 2. Robustness values for the non-dominated solutions when solving the NTIGen instances of
100 tasks (P1), 140 tasks (P2), and 220 tasks (P4).

6 Concluding remarks

The existing TSALBP formulation and previous ALB works do not cover an important
real scenario where the same assembly line is devoted to produce mixed products and
their demand is not fixed. In this paper we have presented a new robustness function
measureR3. It is defined based on the number of overloaded stations. The proposed
model was used to analyse the non-dominated solutions provided by the state-of-the-
art MOO method for the TSALBP-m/A, theadvanced TSALBP-NSGA-II, although the
nature of the robustness model allows the use of any other MOO method instead. The
results of the application of the robustness model are clear. There are some solutions
which are less robust than others when demand changes and the DM can take advantage
of this information before making her/his decision.

Some future works arise from this contribution: (i) propose and evaluate other ro-
bustness functions, (ii) include a graphical visualization model within the robustness
representation of the non-dominated solutions, and (iii) integrate the robustness func-
tions within the search of the MOO method (as a restriction or as another objective):
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