

A GRASP ALGORITHM TO SOLVE THE UNICOST SET COVERING
PROBLEM

Joaquín Bautista, Jordi Pereira

Escola Tècnica Superior d’Enginyers Industrials de Barcelona. Universitat Politècnica de Catalunya.
Av. Diagonal 647, 7th floor, 08028 Barcelona, Spain
joaquin.bautista@upc.edu, jorge.pereira@upc.edu

Abstract – The set covering problem (SCP) is a well-

known combinatorial optimization problem. We present a
GRASP algorithm to Unicost Set Covering Problem, a
special case of the Set Covering Problem where no dis-
tinction is made between covering sets. The most signifi-
cant contribution of the algorithm is the incorporation of
a local improvement procedure based on the heuristics to
solve satisfiability problems (SAT). The quality of the
proposed algorithm is tested on a set of reference in-
stances, comparing the obtained results with those found
in the literature. Our algorithm improves the best known
solutions for many of these instances.

Keywords: Set Covering; Optimization; Constraint
Satisfaction.

I. INTRODUCTION

The Set Covering Problem (SCP) is a well-known
combinatorial optimization problem with numerous ap-
plications in such diverse fields as job assignment in
manufacturing, selection of operators, simplification of
Boolean expressions or service location, see [4] and [9]
between others.

The SCP can be described as follows: given a set M,
|M|=m and n subsets Sj⊆M, j∈N={1,…, n} each with a
non-negative cost cj, the objective is to find a minimum
cost family of subsets Sj such that each element i∈M
belongs to at least one subset of the family. An integer
programming formulation of the SCP follows:

MAX ∑
=

n

j
jj xc

1

(1)

st: Mixa j
Nj

ij ∈≥∑
∈

1 (2)

{ } Njx j ∈∈ 1,0 (3)

The variable xj, equals 1 if the subset Sj is in the se-

lected family, and 0 otherwise. The coefficients aij take
the value 1 when element i belongs to Sj, and 0 other-
wise. The matrix A=(aij), i=1,…,m, j=1,…n, is known as
covering matrix. Each row, the constraints, is associated
to an element, while each column, variable, is associated
to a subset. We say that Sj covers i or that i is covered
by Sj if aij =1.

A particular case of the problem occurs when the
costs , cj, associated to each subset, Sj, are equal. In this
case, all costs may be considered equal to 1. This prob-
lem was introduced in [24], and is found under different
names in the literature, such as Location Set Covering
Problem (LSCP), Minimum Cardinality Set Covering
Problem (MCSCP) or Unicost Set Covering Problem.

The SCP with arbitrary positive costs and the unicost
SCP are NP-Hard, see [11], and are therefore considered
difficult to solve to optimality. This paper presents a
GRASP [21] algorithm to solve the unicost SCP. GRASP
is a random iterative optimization procedure where each
iteration is made up of a randomized greedy constructive
step and a local search. During the constructive step
diversity is added to the search while the local search
step provides the required intensification method.

The motivation of this work was originated by the ne-
cessity to develop effective algorithms to locate curb-
side collection points for urban waste management in
the metropolitan area of Barcelona, [4]. One of the prob-
lems faced was the location of collection points where
citizens leave their waste in refuse bins. If we attempt to
minimize the number of collection points while satisfying
a service measure in terms of maximum allowable dis-
tance between citizens and their nearest collection point,
the problem can be seen as a continuous set covering
problem, and can be discretized into a unicost set cover-
ing problem. Afterwards the model and solutions proce-
dures were integrated to a decision support system to
aid planners in decision-making. The results provided by
the proposed algorithm in this paper outperform the
genetic algorithm and grasp algorithms presented in [4]
and improves the best known solution for several in-
stances in the literature.

The main difference between our algorithm and previ-
ous approaches is the novel use of a local improvement
search based on constraint satisfiability problems. The
local search procedure allows a better exploration of the
solution space and provides a new tool to tackle difficult
unicost SCP problems where a local search can be of
great importance. To the best of our knowledge, no local
search has been proposed for the unicost SCP other
than testing which subsets are redundant for a solution.
There are few studies involving the application of local
search techniques to the unicost SCP problem due to the
difficulty to define good neighborhoods leading to fast
improvements, the difficulty to reach better solutions

Knowledge and Decision Technologies

249

keeping feasibility during the search and the efficiency
of random sampling techniques. Our procedure searches
broad areas with identical objective value. This is
achieved by losing the feasibility of the solution. Feasi-
bility can be recovered at any given time while keeping
the tentative objective value of the unfeasible solution.
This encourages to keep searching high quality solu-
tions even when the search is working with an unfeasi-
ble solution. The results found in this papers were also
presented in [5].

The novel contribution of this work is the combina-
tion of the algorithms presented in [5] into the decision
support system presented in [4],

After reviewing the available literature about the set
covering problem in section II, we go on to show the
existing relation between this problem and constraint
satisfiability problems , in section III. Section IV is de-
voted to the proposed procedure while section V shows
the computational experience conducted to test the
implemented algorithm using instances from the litera-
ture [7]. We finally present the integration of the pro-
posed methods in a Decision Support System and the
conclusions of this work in sections VI and VII.

II. LITERATURE REVIEW

The literature covers several exact and heuristic ap-
proaches to solve set covering problems. We highlight
the first successful approaches from Fisher and Kedia,
based on a dual heuristic and able to solve instances
with up to 200 constraints and 2000 variables [10]. More
recently, Balas and Carrera have proposed an algorithm
based on lagrangean relaxations and subgradient optimi-
zation, which clearly outperforms the previous ap-
proaches [2].

The heuristic approaches can be divided in two main
categories. The first one exploits problem characteristics
and specific features of each instance. Exa mples are
lagrangean relaxation-based procedures, subgradient
optimization methods, [6] and the relaxed dual model
exploitation, [9]. The second category includes local
search procedures and the adaptation of metaheuristics
to the set covering problem, such as genetic algorithms,
[8], and ant algorithms, [17], as well as specifically tai-
lored local search procedures, [26]. The first category
has been used in many real life applications; some with
structured data [9], but the quality of metaheuristic ap-
proaches using some features from the first category of
heuristics, and the late appearance of a highly effective
local search procedure make this category a competitive
approach.

Due to the unicost version specific characteristics,
specific procedures are required. Between the proce-
dures developed for the unicost case, we highlight the
adaptation of general heuristics have been adapted to
the unicost case. See, for instance, Almiñana and Pastor
adaptation, [1], as well as the work of Grossman and
Wool, [13].

Almiñana and Pastor heuristic is based on lagrangean
relaxations and the surrogate problem solution. The
heuristic is tested solving 60 newly generated random
instances and five literature-based instances , and thus it
is quite difficult to test new procedures against this
algorithm.

Grossman and Wool, [13], compared several heuris-
tics for the unicost set covering problem. The work pre-
sents a comprehensive comparison of the results offered
by a neuronal network, and several heuristics that ap-
peared between 1974 and 1993 for both the unicost and
non-unicost problem. The presented heuristics range
from greedy ones to rounding algorithms and they are
tested using the full set of SCP instances coming from
the OR-Library, indicating that the greedy heuristic and
two its variants are the best suited to solve the problem.

In a recent paper Lan et al [16] describe a Meta-RaPS
implementation for both the unicost and general set
covering problem. Their procedure uses an innovative
local search procedure which performs equally well for
both categories of problems.

III. THE SET COVERING PROBLEM AS A CONSTRAINT
SATISFIABILITY PROBLEM

A. Transformation of the problem into a of maximum
constraint satisfiability problem

The relation between the Set Covering Problem and
the Maximum Satisfiability Problem is well-known, as
noted in Garey and Johnson, [11], and Papadimitrious,
[18], where the relationship between both problems is
put forward. To the best of our knowledge this relation-
ship has not been used to develop algorithms to solve
the unicost case, even if at least one paper has used
arbitrary cost set covering instances to evaluate the
quality of the maximum satisfiability algorithms, [25].

The constraint satisfiability problem consists of as-
signing a true or false value to a set of literals in such a
way that it satisfies a clause set in normal disjunctive
form. When the goal consists in searching a solution
satisfying all clauses, we have a feasibility problem
known as SAT, but if the goal is to satisfy the maximum
number of clauses, we have an optimization problem
known as MAX SAT.

A simple scheme to transform the set covering prob-
lem into a constraint satisfiability problem follows:

- Create a set W of n literals. Each literal wj is associ-
ated to one subset Sj⊆M, j=1,…,n. A literal wj takes
value “true”, or “false”, if the variable xj associated
to the set Sj is 1, or 0 respectively

- Define a set of unitary clauses Z corresponding to
the complement of each literal of W.
Z={zj=¬wj:wj∈W}

- Define a set of clauses Y, made up of m clauses,
each one associated with an element of the cover-
ing problem. Each clause is formed by the disjunc-
tion of W literals whose original subsets are said to
cover the element in the covering problem.

Knowledge and Decision Technologies

250

The resulting instance has n literals and n+m clauses,
the goal being to satisfy the maximum number of clauses
of the set Y∪Z.

An example of the transformation procedure is given
below.

Let the following example be the mathematical formu-
lation of a covering problem with four variables and
three constraints:
[MIN] x1+x2+x3+x4 (4)
st: x1+x2=1 (5)
x2+x3=1 (6)
x3+x4=1 (7)

The set W of literals belonging to the associated sat-
isfiability problem is W={w1; w2;w3;w4}. The set of
clauses Z would be formed by four clauses Z={¬w1,
¬w2; ¬w3; ¬w4} and the set of clauses Y would be
formed by three clauses Y={ w1∨ w2 ; w2 ∨ w3; w3 ∨ w4}.
An optimum solution to the MAX SAT problem is
w1=false, w2=true, w3=true, w4=false, which satisfies all
the clauses of set Y, and two of the clauses of set Z. The
associated covering problem solution is x2= x3=1, with a
value of 2, and obviously, it is the optimal solution for
the SCP instance.

It is straightforward to transform a solution for the
associated MAX SAT instance back to a valid SCP
solution. For each unsatisfied clause Y, choose a literal
from set W to take value “true”. This change will keep or
improve the solution to the MAXSAT instance, as it
increases the number of unsatisfied clauses of set Y by
one and reduces by one or more the set of unsatisfied Z
clauses. When all Z clauses are satisfied, let be Ws the
set of literals with value “true” from W. Ws can be
mapped to a solution of the associated SCP, with value
|Ws|.

B. Procedures to solve SAT binary satisfiability prob-
lems

The most successful heuristics for SAT problems are
based on the iterative application of two different
phases. The first phase consists of a constructive pro-
cedure allowing an initial solution to be obtained using a
lot-drawing procedure. The proposed procedures for
this first phase range from GRASP procedures, mostly
found in Weighted Satisfiability, [19] [20], to random
assignments, see [14], mostly found in SAT.

Once obtained a solution to the problem, the second
phase, known as local search, seeks solutions of higher
quality until it reaches a limited number of attempts or it
does not find any better solution. The local search takes
the initial solution and searches its neighborhood,
choosing one of them to become the new current solu-
tion. This search is conducted through a neighborhood
relation specifying the possible solutions that can be
reached in one step of the local search for each solution.
Most of the conducted research is associated to this
phase, and a review of different procedures and a quan-
titative evaluation of their performance is to be seen in

[15].Both phases are repeated during a specified number
of iterations or until a stopping criterion is met.

Among the different procedures, we highlight the
GSAT, [22], and WALKSAT [23]. Both procedures have
reported good results for several feasibility problems
sets. They may be seen as descent algorithms with some
diversification to avoid getting trapped in local optima.
Starting from a random assignment to each literal, they
try to increment the number of satisfied clauses until a
feasible assignment is found or a maximum number of
iterations is reached.

GSAT counts on a neighborhood relation based on
FLIP exchanges. A FLIP exchange consists in negating
the assignment of a single literal. During each iteration
of the GSAT local search, all possible FLIP exchanges
for the current solution are tested and the best one is
implemented, chosen randomly in case of a tie.

WALKSAT adds a mechanism to the GSAT proce-
dure which allows movements that worsen the quality of
the incumbent solution, as in Tabu search [12] though in
a much simpler format. The mechanism consists of in-
cluding a certain level of random search. With high
probability each iteration will use the GSAT rule. If not, a
random literal is chosen and flipped.

To avoid stagnation in locally optimal solutions, new
random assignments are constructed and used as a
diversification mechanism.

The present study implements the WALKSAT local
improvement within a GRASP schema, substituting the
random generation of initial solutions by a generation
phase that builds initial solutions sequentially, taking
into account information about the most promising liter-
als to appear in the final solution.

IV. A GRASP ALGORITHM FOR THE PROBLEM

A. The GRASP metaheuristic
The GRASP metaheuristic [21] is a random iterative

optimization procedure. This metaheuristic has been
used to solve diverse problems of optimization, includ-
ing scheduling, route design, logic, location, graphs,
assignment, manufacturing, transport, and telecommuni-
cations problems, among others.

Each iteration in the metaheuristic is made up of two
phases: a constructive and a local search phase. During
the constructive phase, the algorithm uses a randomized
greedy heuristic to obtain an initial solution to the prob-
lem. This is based on modified greedy procedures, where
the greedy rule is substituted by a random selection
among a limited list of candidates showing the best
values for the greedy selection rule.

On the other hand, the local search phase permits ex-
ploration of the generated solution neighborhood in an
attempt to find higher quality solutions. After local
search, the best solution found during this phase is
compared to the best known solution, and becomes
substitutes it if the objective value is better than the

Knowledge and Decision Technologies

251

previously known. Once a stopping criterion is met, the
best solution obtained during the procedure is returned.

In order to solve an optimization problem by means of
a GRASP procedure, it is necessary to define at least the
following elements integrated in the heuristics:

- the randomized constructive procedure used during
this procedure

- the neighborhood of the solution and the proce-
dure to investigate it

- the stopping criterion, usually associated to a
maximum number of iterations.

One of the major advantages of the GRASP metaheu-
ristic is how easy this general scheme may be adapted to
the solution of particular problems. GRASP requires few
parameters, basically the stopping criterion, associated
to the maximum number of iterations, and a rule to con-
struct the restricted candidate list during the construc-
tive phase.

B. Constructive phase
The constructive phase starts with an unfeasible triv-

ial solution wj=false, ∀j=1,..,n. At each iteration of the
construction phase, a literal is selected and its value is
flipped to true until a feasible solution regarding each
clause from Y is obtained.

The selection of the next literal to flip is limited to a
restricted candidate list (RCL) which consists of the
most promising literals according to a desirable function.
The desirability of each literal equals the number of
additional satisfied clauses from Y obtained by a true
assignment to the literal. The restricted candidate list is
made up of literals whose desirability is higher than a
threshold value L. This threshold is based on the desir-
ability of the best candidate and deterioration parameter
α∈[0,1]. When α=0, the constructive algorithm corre-
sponds to a totally random algorithm; when α=1, the
algorithm corresponds to a deterministic constructive
algorithm with random resolution of ties.

Once the restricted candidate list is available, a can-
didate is then randomly chosen from the restricted list.

This constructive procedure is based on a greedy
SCP heuristic. At every iteration the procedure chooses
a literal associated to a variable which is not yet present
in the solution. Literals are evaluated according to the
number of unsatisfied Y clauses where the literal is pre-
sent, equivalent to the number of additional constraints
satisfied by the related variable in the set covering prob-
lem. The procedure differs from a greedy procedure
because the literal included in the solution is chosen
between the restricted candidate list RCL with equal
probabilities, and not between those featuring the best
local value for the SCP heuristic.

C. Improvement phase
The solutions generated by the constructive proce-

dure are not necessarily optimal, even with respect to
simple neighborhoods. Therefore, a local search phase
usually improves the solutions provided by the con-
structive phase. The expected effectiveness of the local

search procedure depends on a variety of aspects, such
as the structure of the neighborhood definition, the
neighborhood search techniques, the evaluation of the
neighbors cost function, the explored neighborhood,
and the initial solution.

The procedure uses a WALKSAT improvement pro-
cedure used in this paper, [23]. The procedure applies a
descent procedure with probability p, choosing the best
neighbouring solution from the initial reachable solution
applying the best available flip exchange. Otherwise the
procedure applies an escape from local optimums move-
ment which consists of randomly choosing the literal to
flip and applying this exchange.

While the constructive phase uses a procedure in
consonance with the procedures to solve the set cover-
ing problem, the local search phase is completely based
on the constraint satisfiability problem. During local
search phases, the solution may therefore be no longer
feasible for the original covering problem, as it may not
fulfill constraint-associated clauses. In exchange, the
procedure allows the exploration of feasible solutions
areas unreachable without an unfeasibility phase. In the
case of the procedure returning an unfeasible solution,
Algorithm 1 may be applied to achieve a feasible solu-
tion.

V. COMPUTATIONAL RESULTS

The algorithm was programmed in C and compiled us-
ing GCC 3.2, with the –O3 optimization flag. All the runs
were carried out on a Pentium 4 computer at 1800MHz
with 512Mb RAM under the Linux operating system.
The test were obtained from the instance sets for the
general set covering problem available from the OR-
Library [7]; as in previous studies devoted to the
unicost problem, the costs associated to the variables
appearing in each instance were ignored.

The control parameters of the GRASP heuristic and
WALKSAT local search were fixed to num-
ber_iterations=500, α=0.9, MAXFLIPS=10*|W| and
p=0.75 for the computational experience.

Obviously the number of iterations, equal to the
number of solutions generated during the construction
phase, and number of flips, equal to the number of dif-
ferent neighbourhoods explored during each local
search phase, is related to the computation time, al-
though an increase does not necessarily improve the
quality of the obtained solution.

In order to evaluate the quality of the solution ob-
tained by the grasp heuristic presented here, we com-
pare the best performing heuristic from the Grossman
and Wool experiment, R-Gr, to compare its performance
with the constructive phase of the GRASP heuristic and
the total GRASP heuristic. R-Gr is a randomized greedy
algorithm. In each iteration of the construction phase the
variable that appears in the largest number of unsatisfied
inequalities is picked. Ties are broken at random. A post
optimization procedure is also used for each generated

Knowledge and Decision Technologies

252

solution, based on a redundancy elimination procedure,
[13]. Grossman and Wool iterated the basic algorithm for
100 runs as ties are very common and they vary greatly
the performance of the algorithm.

Table I- Results reported by the proposed algorithms for
each instance present in the literature.

Inst. R-Gr
105 it.

GRASP
105 it.

GRASP
+SAT

4.1 39 39 38
4.2 37 37 37
4.3 39 39 38
4.4 40 40 39
4.5 39 39 38
4.6 38 38 38
4.7 39 38 38
4.8 38 38 38
4.9 39 39 38
4.10 40 39 38
5.1 35 35 35
5.2 34 34 34
5.3 35 35 35
5.4 35 34 34
5.5 35 35 34
5.6 35 35 34
5.7 35 34 34
5.8 36 35 35
5.9 36 36 36
5.10 35 35 35
6.1 22 21 21
6.2 21 21 20
6.3 21 21 21
6.4 22 21 21
6.5 21 21 21
A.1 39 39 39
A.2 40 39 39
A.3 40 39 39
A.4 38 38 38
A.5 39 39 39
B.1 22 22 22
B.2 22 22 22
B.3 22 22 22
B.4 23 22 22
B.5 23 22 22
C.2 44 44 44
C.3 44 44 44
C.4 44 44 44
C.5 44 44 44
C.2 44 44 44

The R-Gr algorithm can be seen as a special GRASP
algorithm with α=1 and redundancy elimination proce-
dure as the local search phase. We implemented the
redundancy elimination procedure and iterated the algo-
rithm for 100000 iterations. Even if the running times
were still far smaller than the proposed algorithm, we

stopped the search, as no improvement for any instance
was found during the last 10000 iterations.

Table I and II compares the Random Greedy algo-
rithm, column R-Gr., a GRASP with α=0.9 and local
search based on redundancy elimination, column
GRASP, and a GRASP with α=0.9 and local search based
on WALKSAT, column GRASP+SAT, after 105 solu-
tions have been constructed (500 solutions and
MAXFLIPS=10*|W| for GRASP+SAT algorithm).

It can be seen that the GRASP algorithm with
WALKSAT local search outperforms all other algo-
rithms obtaining the best solutions for each instance
and improving any other algorithm in 13 instances, but it
shows a larger computational running time, as noted in
Table III where the mean running time in seconds per
algorithm and instance set is reported. Let us note that
in most cases the algorithm does not require the given
running to find the reported solutions. The results for
the C and D sets were found within comparable running
times to those reported by the R-Gr heuristic, and NRE
and NRF instances were solved in a few seconds.

Table II- Results reported by the proposed algorithms for
each instance present in the literature (cont.)

Inst. R-Gr
105 it.

GRASP
105 it.

GRASP
+SAT

D.1 26 25 25
D.2 25 25 25
D.3 26 25 25
D.4 26 25 25
D.5 26 25 25
E.1 5 5 5
E.2 5 5 5
E.3 5 5 5
E.4 5 5 5
E.5 5 5 5

NRE.1 17 17 17
NRE.2 17 17 17
NRE.3 17 17 17
NRE.4 17 17 17
NRE.5 17 17 17
NRF.1 10 10 10
NRF.2 11 10 10
NRF.3 11 10 10
NRF.4 11 10 10
NRF.5 11 10 10
CYC.6 60 61 60
CYC.7 156 155 144
CYC.8 378 377 348
CYC.9 894 888 813
CYC.10 2061 2063 1918
CYC.11 4688 4677 4268

CLR.10-4 25 26 25
CLR.11-4 25 24 23
CLR.12-4 23 25 23
CLR.13-4 26 26 23

Knowledge and Decision Technologies

253

The second best performing heuristic is the GRASP
algorithm without WALKSAT search. This algorithm
uses the redundancy test as the local search phase of
the GRASP heuristic and obtains the best known solu-
tion for 51 out of 70 instances, with a minimal running
time increase compared to the R-Gr heuristic, which is
the fastest algorithm.

From the previous results, we conclude that the algo-
rithm to apply depends on the available time to solve the
instance. When the running time is not an issue, our
WALKSAT algorithm can be applied as it is capable of
improving the solution of several instances, while if the
available time is an issue and a fast result must be pro-
vided, the GRASP approach with redundancy testing is
preferable.

Let us note that the different parameters of the in-
stances modify the quality of the solutions found from
our proposal. When the density of the matrix A is rela-
tively small, as instance sets 4, 5, A and C, the
WALKSAT search usually obtains better solutions than
the construction procedures with redundancy test.
When the density of the matrix is high, the local search
phase does not improve the quality of the solution,
mostly because the quality of the solutions obtained by
the constructive procedure plus redundancy testing are
very near to the optimal or even optimal.
Table III- Running time in seconds per algorithm and instance

set.

Inst. Set R-Gr
105 it.

GRASP
105 it.

GRASP
+SAT

4 39 59 86
5 54 94 318
6 30 42 114
A 83 155 545
B 84 126 952
C 123 230 1067
D 136 198 2433
E 15 17 54

NRE 257 310 20374
NRF 418 450 41776
CYC 1872 2333 9111
CLR 186 184 1475

VI. APPLICATION OF THE ALGORITHMS TO
DECISION SUPPORT SYSTEMS

The applicability of the proposed procedures to real-
life circumstances is subject to their integration within
decision support systems to aid planners in decision-
making. The software application was named SIRUS [3]
and it was designed to assist the decision-making, de-
sign and management steps related to municipal waste
collection in an urban area. The system simplifies the
periodical tasks of deciding on locations of collection
points, refuse bin distribution and routing decisions.

SIRUS was designed to be integrated with a geo-
graphic information system. The geographical informa-

tion system makes it possible to work with CAD-like
geographic data and link this data with databases from
the municipality’s management systems, such as the
census of inhabitants, taxation on economic activities
and data relevant to traffic.

The decision maker starts by selecting the section of
the city where the new collection system is to be estab-
lished. The sections are usually determined by political
concerns, different characteristics and are related to
neighborhood divisions. The application obtains infor-
mation about the corresponding streets, their sections,
the population present in each street section, and the
possibility of driving in with a collection truck. The user
may then modify the attributes of the selection so as to
define which street sections should be covered and
which street sections are capable of containing a collec-
tion area.

The data is used to identify the vertices and edges of
the graph, as well as the covering and population graph.
Additionally, a covering distance should be specified by
the user to represent the maximum allowable distance
each citizen should travel to reach the nearest collection
point. During a preprocess, the graph is discretized, the
population that cannot be covered is identified and the
aforementioned algorithms are executed. The results of
the algorithm are shown graphically, see the colored
circles in Figure 2, together with numeric data such as
the distance separating the least favored citizen/s from
the nearest collection point, and the identification of
this/these group/s to indicate the precise position of the
citizen are given to the decision makers. This data is
available to facilitate greater detail to users and decision
makers alike.

The advantages offered by the use of the system or
similar ones are significant. This type of system facili-
tates planning and programming of the garbage collec-
tion service. Indeed, it is possible to plan with ease, for
medium and long term periods, a selective collection
service in a municipality or in one of its zones. To do
this, it is sufficient to simulate future scenarios for which
population evolution and information related to urban
planning are the basic requirements. This means that it is
possible to design the physical collection system in a
new urban area without having to adjust the service by
trial and error in a populated sector of the territory.

The application of this type of system leads to cost
reductions and improvements in the service. The results
offered by the system make it possible to reveal defi-
ciencies in the quality of the service, such as very long
distances covered by citizens and overloaded garbage
accumulation areas. They also reveal wasteful elements
such as an excessive number of containers or garbage
accumulation areas which are very close. Results of this
type, which are obtained interactively and quickly with
each modification to the design of the physical system,
may be used for taking corrective measures with the aim
of improving quality and better use of resources

Knowledge and Decision Technologies

254

VII. CONCLUSIONS

Operations Management, Operations Research and
Artificial Intelligence are capable of modeling and solv-
ing Selective Municipal Waste Management problems.
One of the problems encountered in the design of selec-
tive municipal waste collection systems is treated as a
unicost set covering problem and a novel procedure
based on the combination of Operations Research and
Artificial Intelligence methods is proposed. From an
algorithmic point of view, the algorithm performs signifi-
cantly well, improving several best known solutions.

It is important to point out that the proposed algo-
rithm should be used in combination with a Decision
Support System to obtain an application allowing a
methodological approach to the design of municipal
waste management systems and to increase the collec-
tion of recyclable products. A tool with these character-
istics facilitates the calculations performed in the deci-
sion-making step for a given management plan, which
might not be solved in absence of such a tool.

VIII.ACKNOWLEDGEMENTS

This work was partly funded by Grant BEC2003-03809
from the CYCIT and Grant TIC2002-10886E from the
Spanish Ministry of Science and Technology. We also
acknowledge the support given by the UPC Nissan
Chair.

REFERENCES

[1] Almiñana, M., Pastor, J. T., An adaptation of SH
heuristic to the location set covering problem, Eur J
Oper Res 1997, 100(3):586-593

[2] Balas, E., Carrera, M. C., A dynamic subgradient-
based branch-and-bound procedure for set covering.
Oper Res 1996, 44(6): 875-890

[3] Bautista J. Proyecto integral de gestión de residuos
urbanos en el municipio de Sant Boi de Llobregat.
Barcelona, CPDA, 2001

[4] Bautista, J., Pereira, J. Modeling the problem of
locating collection areas for urban waste
management. An application to the metropolitan area
of Barcelona. OMEGA 2006, 34(6):617-629

[5] Bautista, J., Pereira, J. A GRASP algorithm to solve
the unicost set covering problem. Comput. Oper.
Res., In press. doi:10.1016/ j.cor.2005.11.026

[6] Beasley, J.E., A Lagrangean heuristic for set
covering problems. Nav Res Log 1990, 37(1):151-164

[7] Beasley, J.E., OR-Library: distributing test problems
by electronic mail, J Oper Res Soc 1990, 41(11):1069-
1072

[8] Beasley JE, Chu P.C., A genetic algorithm for the set
covering problem. Eur J Oper Res 1996, 94(2):392-404

[9] Caprara, A., Fischetti, M., Toth, P., A heuristic
method for the set covering problem, Oper Res, 1999,
47(5):730-743

[10]Fisher, M.L., Kedia, P., Optimal solutions of set
covering/partitioning problems using dual heuristics.
Manage Sci 1990, 36(6):674-688

[11]Garey, M. R., Johnson, D. S., Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman & Company, 1979

[12]Glover, F., Laguna, M., Tabu Search, Kluwer
Academics Publishing 1997

[13]Grossman, T, Wool, A., Computational experience
with approximation algorithms for the set covering
problem. Eur J Oper Res, 1997, 101(1):81-92

[14]Gu, J., Efficient Local Search for Very Large-Scale
Satisfiability Problems, ACM SIGART Bulletin
1992(3):8-12

[15]Hoos, H.H., Stutzle, T., Local search algorithms for
SAT: An empirical evaluation, J Autom Reasoning
2000, 24(4):421-481

[16]Lan, G., DePuy, G.W., Whitehouse, G.E., An effec-
tive and simple heuristic for the set covering prob-
lem, Eur. J. Oper. Res., in press.
doi:10.1016/j.ejor.2005.09.028

[17]Lessing, L., Dumitrescu, I., Stützle, T., A comparison
between ACO algorithms for the Set Covering
Problem, Lecture Notes in Computer Science 2004,
3172:1-12

[18]Papadimitrious, C.H., Computational Complexity,
Addison-Wesley Pub Co, 1993

[19]Resende, M.G.C., Feo, T.A. A GRASP for
Satisfiability, in Cliques, Coloring, and Satisfiability:
Second DIMACS Imp lementation Challenge,
Johnson, D.S., Trick, M.A., editors., DIMACS Series
on Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, 1996,
26:499-520

[20]Resende, M.G.C., Pitsoulis, L.S., Pardalos, P.M.,
Approximate solution of weighted MAX-SAT prob-
lems using GRASP, in Du, D., Gu, J., Pardalos, P.M.,
editors, DIMACS Series on Discrete Mathematics
and Theoretical Computer Science Satisfiability
problem: Theory and Applications, American
Mathematical Society, 1997, 35:393-405

[21]Resende, M. G. C., Ribeiro, C. C., Greedy randomized
adaptive search procedures, in Handbook of
Metaheuristics, F. Glover and G. Kochenberger, eds.,
Kluwer Academic Publishers, 2003, p. 219-249

[22]Selman, B., Levesque, H., Mitchell, D., A new
method for solving hard satisfiability problems. In
Proceedings of the 10th National Conference on
Artificial Intelligence, AAAI Press / The MIT Press,
Menlo Park, CA, USA, 1992. p 440-446

Knowledge and Decision Technologies

255

[23]Selman, B., Levesque, H., Mitchell, D., A new
method for solving hard satisfiability problems. In
Proceedings of the 10th National Conference on
Artificial Intelligence, AAAI Press / The MIT Press,
Menlo Park, CA, USA, 1992. p 440-446

[24]Toregas, C., Swain, R., ReVelle, C., and Bergman, L.,
The Location of Emergency Service Facilities, Oper
Res 1971, 19:1363-1373

[25]Yagiura, M., Ibaraki, T., Efficient 2 and 3-flip
neighborhood search algorithms for the MAX SAT:
Experimental evaluation, J Heuristics 2001, 7(5):423-
442

[26]Yagiura, M., Kishida, M., Ibaraki, T. , `A 3-Flip
Neighborhood Local Search for the Set Covering
Problem, ' Technical Report #2004-001, Department of
Applied Mathematics and Physics, Graduate School
of Informatics, Kyoto University, 2004

Knowledge and Decision Technologies

256

