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Abstract – The set covering problem (SCP) is a well-

known combinatorial optimization problem. We present a 
GRASP algorithm to Unicost Set Covering Problem, a 
special case of the Set Covering Problem where no dis-
tinction is made between covering sets. The most signifi-
cant contribution of the algorithm is the incorporation of 
a local improvement procedure based on the heuristics to 
solve satisfiability problems (SAT). The quality of the 
proposed algorithm is tested on a set of reference in-
stances, comparing the obtained results with those found 
in the literature. Our algorithm improves the best known 
solutions for many of these instances. 

Keywords: Set Covering; Optimization; Constraint 
Satisfaction. 

I. INTRODUCTION 

The Set Covering Problem (SCP) is a well-known 
combinatorial optimization problem with numerous ap-
plications in such diverse fields as job assignment in 
manufacturing, selection of operators, simplification of 
Boolean expressions or service location, see [4] and [9] 
between others. 

The SCP can be described as follows: given a set M, 
|M|=m and n subsets  Sj⊆M, j∈N={1,…, n} each with a 
non-negative cost cj, the objective is to find a minimum 
cost family of subsets  Sj such that each element i∈M 
belongs to at least one subset of the family. An integer 
programming formulation of the SCP follows: 

MAX ∑
=

n

j
jj xc

1

 
 

(1) 

st: Mixa j
Nj

ij ∈≥∑
∈

1  (2) 

{ } Njx j ∈∈ 1,0  (3) 

 
The variable xj, equals 1 if the subset Sj is in the se-

lected family, and 0 otherwise. The coefficients aij take 
the value 1 when element i belongs to Sj, and 0 other-
wise. The matrix A=(aij), i=1,…,m, j=1,…n, is known as 
covering matrix. Each row, the constraints, is associated 
to an element, while each column, variable, is associated 
to a subset. We say that Sj covers i or that i is covered 
by Sj if aij =1. 

A particular case of the problem occurs when the 
costs , cj, associated to each subset, Sj, are equal. In this 
case, all costs may be considered equal to 1. This prob-
lem was introduced in [24], and is found under different 
names in the literature, such as Location Set Covering 
Problem (LSCP), Minimum Cardinality Set Covering 
Problem (MCSCP) or Unicost Set Covering Problem. 

The SCP with arbitrary positive costs and the unicost 
SCP are NP-Hard, see [11], and are therefore considered 
difficult to solve to optimality. This paper presents a 
GRASP [21] algorithm to solve the unicost SCP. GRASP 
is a random iterative optimization procedure where each 
iteration is made up of a randomized greedy constructive 
step and a local search. During the constructive step 
diversity is added to the search while the local search 
step provides the required intensification method. 

The motivation of this work was originated by the ne-
cessity to develop effective algorithms to locate curb-
side collection points for urban waste management in 
the metropolitan area of Barcelona, [4]. One of the prob-
lems faced was the location of collection points where 
citizens leave their waste in refuse bins. If we attempt to 
minimize the number of collection points while satisfying 
a service measure in terms of maximum allowable dis-
tance between citizens and their nearest collection point, 
the problem can be seen as a continuous set covering 
problem, and can be discretized into a unicost set cover-
ing problem. Afterwards the model and solutions proce-
dures were integrated to a decision support system to 
aid planners in decision-making. The results provided by 
the proposed algorithm in this paper outperform the 
genetic algorithm and grasp algorithms presented in [4] 
and improves the best known solution for several in-
stances in the literature. 

The main difference between our algorithm and previ-
ous approaches is the novel use of a local improvement 
search based on constraint satisfiability problems. The 
local search procedure allows a better exploration of the 
solution space and provides a new tool to tackle difficult 
unicost SCP problems where a local search can be of 
great importance. To the best of our knowledge, no local 
search has been proposed for the unicost SCP other 
than testing which subsets are redundant for a solution. 
There are few studies involving the application of local 
search techniques to the unicost SCP problem due to the 
difficulty to define good neighborhoods leading to fast 
improvements, the difficulty to reach better solutions 
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keeping feasibility during the search and the efficiency 
of random sampling techniques. Our procedure searches 
broad areas with identical objective value. This is 
achieved by losing the feasibility of the solution. Feasi-
bility can be recovered at any given time while keeping 
the tentative objective value of the unfeasible solution. 
This encourages to keep searching high quality solu-
tions even when the search is working with an unfeasi-
ble solution. The results found in this papers were also 
presented in [5]. 

The novel contribution of this work is the combina-
tion of the algorithms presented in [5] into the decision 
support system presented in [4],  

After reviewing the available literature about the set 
covering problem in section II, we go on to show the 
existing relation between this problem and constraint 
satisfiability problems , in section III. Section IV is de-
voted to the proposed procedure while section V shows 
the computational experience conducted to test the 
implemented algorithm using instances from the litera-
ture [7]. We finally present the integration of the pro-
posed methods in a Decision Support System and the 
conclusions of this work  in sections VI and VII. 

II. LITERATURE REVIEW 

The literature covers several exact and heuristic ap-
proaches to solve set covering problems. We highlight 
the first successful approaches from Fisher and Kedia, 
based on a dual heuristic and able to solve instances 
with up to 200 constraints and 2000 variables [10]. More 
recently, Balas and Carrera have proposed an algorithm 
based on lagrangean relaxations and subgradient optimi-
zation, which clearly outperforms the previous ap-
proaches [2]. 

The heuristic approaches can be divided in two main 
categories. The first one exploits problem characteristics 
and specific features of each instance. Exa mples are 
lagrangean relaxation-based procedures, subgradient 
optimization methods, [6] and the relaxed dual model 
exploitation, [9]. The second category includes local 
search procedures and the adaptation of metaheuristics 
to the set covering problem, such as genetic algorithms, 
[8], and ant algorithms, [17], as well as specifically tai-
lored local search procedures, [26]. The first category 
has been used in many real life applications; some with 
structured data [9], but the quality of metaheuristic ap-
proaches using some features from the first category of 
heuristics, and the late appearance of a highly effective 
local search procedure make this category a competitive 
approach. 

Due to the unicost version specific characteristics, 
specific procedures are required. Between the proce-
dures developed for the unicost case, we highlight the 
adaptation of general heuristics have been adapted to 
the unicost case. See, for instance, Almiñana and Pastor 
adaptation, [1], as well as the work of Grossman and 
Wool, [13]. 

Almiñana and Pastor heuristic is  based on lagrangean 
relaxations and the surrogate problem solution. The 
heuristic is tested solving 60 newly generated random 
instances and five literature-based instances , and thus it 
is quite difficult to test new procedures against this 
algorithm. 

Grossman and Wool, [13], compared several heuris-
tics for the unicost set covering problem. The work pre-
sents a comprehensive comparison of the results offered 
by a neuronal network, and several heuristics that ap-
peared between 1974 and 1993 for both the unicost and 
non-unicost problem. The presented heuristics range 
from greedy ones to rounding algorithms  and they are 
tested using the full set of SCP instances coming from 
the OR-Library, indicating that the greedy heuristic and 
two its variants are the best suited to solve the problem.  

In a recent paper Lan et al [16] describe a Meta-RaPS 
implementation for both the unicost and general set 
covering problem. Their procedure uses an innovative 
local search procedure which performs equally well for 
both categories of problems. 

III. THE SET COVERING PROBLEM AS A CONSTRAINT 
SATISFIABILITY PROBLEM  

A. Transformation of the problem into a of maximum 
constraint satisfiability problem 

The relation between the Set Covering Problem and 
the Maximum Satisfiability Problem is well-known, as 
noted in Garey and Johnson, [11], and Papadimitrious, 
[18], where the relationship between both problems is 
put forward. To the best of our knowledge this relation-
ship has not been used to develop algorithms to solve 
the unicost case, even if at least one paper has used 
arbitrary cost set covering instances to evaluate the 
quality of the maximum satisfiability algorithms, [25]. 

The constraint satisfiability problem consists of as-
signing a true or false value to a set of literals in such a 
way that it satisfies a clause set in normal disjunctive 
form. When the goal consists in searching a solution 
satisfying all clauses, we have a feasibility problem 
known as SAT, but if the goal is to satisfy the maximum 
number of clauses, we have an optimization problem 
known as MAX SAT. 

A simple scheme to transform the set covering prob-
lem into a constraint satisfiability problem follows: 

- Create a set W of n literals. Each literal wj is associ-
ated to one subset Sj⊆M, j=1,…,n. A literal wj takes 
value “true”, or “false”, if the variable xj associated 
to the set Sj is 1, or 0 respectively 

- Define a set of unitary clauses Z corresponding to 
the complement of each literal of W. 
Z={zj=¬wj:wj∈W} 

- Define a set of clauses Y, made up of m clauses, 
each one associated with an element of the cover-
ing problem. Each clause is formed by the disjunc-
tion of W literals whose original subsets are said to 
cover the element in the covering problem. 
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The resulting instance has n literals and n+m clauses, 
the goal being to satisfy the maximum number of clauses 
of the set Y∪Z.  

An example of the transformation procedure is given 
below. 

Let the following example be the mathematical formu-
lation of a covering problem with four variables and 
three constraints: 
[MIN] x1+x2+x3+x4 (4) 
st: x1+x2=1 (5) 
x2+x3=1 (6) 
x3+x4=1 (7) 

The set W of literals belonging to the associated sat-
isfiability problem is W={w1; w2;w3;w4}.  The set of 
clauses Z would be formed by four clauses Z={¬w1, 
¬w2; ¬w3; ¬w4} and the set of clauses Y would be 
formed by three clauses Y={ w1∨  w2 ; w2 ∨  w3; w3 ∨  w4}. 
An optimum solution to the MAX SAT problem is 
w1=false, w2=true, w3=true, w4=false, which satisfies all 
the clauses of set Y, and two of the clauses of set Z. The 
associated covering problem solution is x2= x3=1, with a 
value of 2, and obviously, it is the optimal solution for 
the SCP instance. 

It is straightforward to transform a solution for the 
associated MAX SAT instance back to a valid SCP 
solution. For each unsatisfied clause Y, choose a literal 
from set W to take value “true”. This change will keep or 
improve the solution to the MAXSAT instance, as it 
increases the number of unsatisfied clauses of set Y by 
one and reduces by one or more the set of unsatisfied Z 
clauses. When all Z clauses are satisfied, let be Ws the 
set of literals with value “true” from W. Ws can be 
mapped to a solution of the associated SCP, with value 
|Ws|. 

B. Procedures to solve SAT binary satisfiability prob-
lems 

The most successful heuristics for SAT problems are 
based on the iterative application of two different 
phases. The first phase consists of a constructive pro-
cedure allowing an initial solution to be obtained using a 
lot-drawing procedure. The proposed procedures for 
this first phase range from GRASP procedures, mostly 
found in Weighted Satisfiability,  [19] [20], to random 
assignments, see [14], mostly found in SAT. 

Once obtained a solution to the problem, the second 
phase, known as local search, seeks solutions of higher 
quality until it reaches a limited number of attempts or it 
does not find any better solution. The local search takes 
the initial solution and searches its neighborhood, 
choosing one of them to become the new current solu-
tion. This search is conducted through a neighborhood 
relation specifying the possible solutions that can be 
reached in one step of the local search for each solution. 
Most of the conducted research is associated to this 
phase, and a review of different procedures and a quan-
titative evaluation of their performance is to be seen in 

[15].Both phases are repeated during a specified number 
of iterations or until a stopping criterion is met. 

Among the different procedures, we highlight the 
GSAT, [22], and WALKSAT [23]. Both procedures have 
reported good results for several feasibility problems 
sets. They may be seen as descent algorithms with some 
diversification to avoid getting trapped in local optima. 
Starting from a random assignment to each literal, they 
try to increment the number of satisfied clauses until a 
feasible assignment is found or a maximum number of 
iterations is reached. 

GSAT counts on a neighborhood relation based on 
FLIP exchanges. A FLIP exchange consists in negating 
the assignment of a single literal. During each iteration 
of the GSAT local search, all possible FLIP exchanges 
for the current solution are tested and the best one is 
implemented, chosen randomly in case of a tie. 

WALKSAT adds a mechanism to the GSAT proce-
dure which allows movements that worsen the quality of 
the incumbent solution, as in Tabu search [12] though in 
a much simpler format. The mechanism consists of in-
cluding a certain level of random search. With high 
probability each iteration will use the GSAT rule. If not, a 
random literal is chosen and flipped. 

To avoid stagnation in locally optimal solutions, new 
random assignments are constructed and used as a 
diversification mechanism.  

The present study implements the WALKSAT local 
improvement within a GRASP schema, substituting the 
random generation of initial solutions by a generation 
phase that builds initial solutions sequentially, taking 
into account information about the most promising liter-
als to appear in the final solution. 

IV. A GRASP ALGORITHM FOR THE PROBLEM  

A. The GRASP metaheuristic 
The GRASP metaheuristic [21] is a random iterative 

optimization procedure. This metaheuristic has been 
used to solve diverse problems of optimization, includ-
ing scheduling, route design, logic, location, graphs, 
assignment, manufacturing, transport, and telecommuni-
cations problems, among others. 

Each iteration in the metaheuristic is made up of two 
phases: a constructive and a local search phase. During 
the constructive phase, the algorithm uses a randomized 
greedy heuristic to obtain an initial solution to the prob-
lem. This is based on modified greedy procedures, where 
the greedy rule is substituted by a random selection 
among a limited list of candidates showing the best 
values for the greedy selection rule. 

On the other hand, the local search phase permits ex-
ploration of the generated solution neighborhood in an 
attempt to find higher quality solutions. After local 
search, the best solution found during this phase is 
compared to the best known solution, and becomes 
substitutes it if the objective value is better than the 
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previously known. Once a stopping criterion is met, the 
best solution obtained during the procedure is returned. 

In order to solve an optimization problem by means of 
a GRASP procedure, it is necessary to define at least the 
following elements integrated in the heuristics: 

- the randomized constructive procedure used during 
this  procedure  

- the neighborhood of the solution and the proce-
dure to investigate it  

- the stopping criterion, usually associated to a 
maximum number of iterations. 

One of the major advantages of the GRASP metaheu-
ristic is how easy this general scheme may be adapted to 
the solution of particular problems. GRASP requires few 
parameters, basically the stopping criterion, associated 
to the maximum number of iterations, and a rule to con-
struct the restricted candidate list during the construc-
tive phase.  

B. Constructive phase 
The constructive phase starts with an unfeasible triv-

ial solution wj=false, ∀j=1,..,n. At each iteration of the 
construction phase, a literal is selected and its value is 
flipped to true until a feasible solution regarding each 
clause from Y is obtained. 

The selection of the next literal to flip is limited to a 
restricted candidate list (RCL) which consists  of the 
most promising literals according to a desirable function. 
The desirability of each literal equals the number of 
additional satisfied clauses from Y obtained by a true 
assignment to the literal. The restricted candidate list is 
made up of literals whose desirability is higher than a 
threshold value L. This threshold is based on the desir-
ability of the best candidate and deterioration parameter 
α∈[0,1]. When α=0, the constructive algorithm corre-
sponds to a totally random algorithm; when α=1, the 
algorithm corresponds to a deterministic constructive 
algorithm with random resolution of ties. 

Once the restricted candidate list is available, a can-
didate is then randomly chosen from the restricted list. 

This constructive procedure is based on a greedy 
SCP heuristic. At every iteration the procedure chooses 
a literal associated to a variable which is not yet present 
in the solution. Literals are evaluated according to the 
number of unsatisfied Y clauses where the literal is pre-
sent, equivalent to the number of additional constraints 
satisfied by the related variable in the set covering prob-
lem. The procedure differs from a greedy procedure 
because the literal included in the solution is  chosen 
between the restricted candidate list RCL with equal 
probabilities, and not between those featuring the best 
local value for the SCP heuristic. 

C. Improvement phase 
The solutions generated by the constructive proce-

dure are not necessarily optimal, even with respect to 
simple neighborhoods. Therefore, a local search phase 
usually improves the solutions provided by the con-
structive phase. The expected effectiveness of the local 

search procedure depends on a variety of aspects, such 
as the structure of the neighborhood definition, the 
neighborhood search techniques, the evaluation of the 
neighbors cost function, the explored neighborhood, 
and the initial solution. 

The procedure uses a WALKSAT improvement pro-
cedure used in this paper, [23]. The procedure applies a 
descent procedure with probability p, choosing the best 
neighbouring solution from the initial reachable solution 
applying the best available flip exchange. Otherwise the 
procedure applies an escape from local optimums move-
ment which consists of randomly choosing the literal to 
flip and applying this exchange. 

While the constructive phase uses a procedure in 
consonance with the procedures to solve the set cover-
ing problem, the local search phase is completely based 
on the constraint satisfiability problem. During local 
search phases, the solution may therefore be no longer 
feasible for the original covering problem, as it may not 
fulfill constraint-associated clauses. In exchange, the 
procedure allows the exploration of feasible solutions 
areas unreachable without an unfeasibility phase. In the 
case of the procedure returning an unfeasible solution, 
Algorithm 1 may be applied to achieve a feasible solu-
tion. 

V. COMPUTATIONAL RESULTS 

The algorithm was programmed in C and compiled us-
ing GCC 3.2, with the –O3 optimization flag. All the runs 
were carried out on a Pentium 4 computer at 1800MHz 
with 512Mb RAM under the Linux operating system. 
The test were obtained from the instance sets for the 
general set covering problem available from the OR-
Library [7]; as in previous studies devoted to the 
unicost problem, the costs associated to the variables 
appearing in each instance were ignored. 

The control parameters of the GRASP heuristic and 
WALKSAT local search were fixed to num-
ber_iterations=500, α=0.9, MAXFLIPS=10*|W| and 
p=0.75 for the computational experience. 

Obviously the number of iterations, equal to the 
number of solutions generated during the construction 
phase, and number of flips, equal to the number of dif-
ferent neighbourhoods explored during each local 
search phase, is related to the computation time, al-
though an increase does not necessarily improve the 
quality of the obtained solution.  

In order to evaluate the quality of the solution ob-
tained by the grasp heuristic presented here, we com-
pare the best performing heuristic from the Grossman 
and Wool experiment, R-Gr, to compare its performance 
with the constructive phase of the GRASP heuristic and 
the total GRASP heuristic. R-Gr is a randomized greedy 
algorithm. In each iteration of the construction phase the 
variable that appears in the largest number of unsatisfied 
inequalities is picked. Ties are broken at random. A post 
optimization procedure is also used for each generated 
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solution, based on a redundancy elimination procedure, 
[13]. Grossman and Wool iterated the basic algorithm for 
100 runs as ties are very common and they vary greatly 
the performance of the algorithm. 

Table I-  Results reported by the proposed algorithms for 
each instance present in the literature. 

Inst. R-Gr 
105 it. 

GRASP 
105 it. 

GRASP 
+SAT 

4.1 39 39 38 
4.2 37 37 37 
4.3 39 39 38 
4.4 40 40 39 
4.5 39 39 38 
4.6 38 38 38 
4.7 39 38 38 
4.8 38 38 38 
4.9 39 39 38 
4.10 40 39 38 
5.1 35 35 35 
5.2 34 34 34 
5.3 35 35 35 
5.4 35 34 34 
5.5 35 35 34 
5.6 35 35 34 
5.7 35 34 34 
5.8 36 35 35 
5.9 36 36 36 
5.10 35 35 35 
6.1 22 21 21 
6.2 21 21 20 
6.3 21 21 21 
6.4 22 21 21 
6.5 21 21 21 
A.1 39 39 39 
A.2 40 39 39 
A.3 40 39 39 
A.4 38 38 38 
A.5 39 39 39 
B.1 22 22 22 
B.2 22 22 22 
B.3 22 22 22 
B.4 23 22 22 
B.5 23 22 22 
C.2 44 44 44 
C.3 44 44 44 
C.4 44 44 44 
C.5 44 44 44 
C.2 44 44 44 

The R-Gr algorithm can be seen as a special GRASP 
algorithm with α=1 and redundancy elimination proce-
dure as the local search phase. We implemented the 
redundancy elimination procedure and iterated the algo-
rithm for 100000 iterations. Even if the running times 
were still far smaller than the proposed algorithm, we 

stopped the search, as no improvement for any instance 
was found during the last 10000 iterations. 

Table I and II compares the Random Greedy algo-
rithm, column R-Gr., a GRASP with α=0.9 and local 
search based on redundancy elimination, column 
GRASP, and a GRASP with α=0.9 and local search based 
on WALKSAT, column GRASP+SAT, after 105 solu-
tions have been constructed (500 solutions and 
MAXFLIPS=10*|W| for GRASP+SAT algorithm).  

It can be seen that the GRASP algorithm with 
WALKSAT local search outperforms all other algo-
rithms obtaining the best solutions for each instance 
and improving any other algorithm in 13 instances, but it 
shows a larger computational running time, as noted in 
Table III where the mean running time in seconds per 
algorithm and instance set is reported. Let us note that 
in most cases the algorithm does not require the given 
running to find the reported solutions. The results for 
the C and D sets were found within comparable running 
times to those reported by the R-Gr heuristic, and NRE 
and NRF instances were solved in a few seconds. 

Table II-  Results reported by the proposed algorithms for 
each instance present in the literature (cont.) 

Inst. R-Gr 
105 it. 

GRASP 
105 it. 

GRASP 
+SAT 

D.1 26 25 25 
D.2 25 25 25 
D.3 26 25 25 
D.4 26 25 25 
D.5 26 25 25 
E.1 5 5 5 
E.2 5 5 5 
E.3 5 5 5 
E.4 5 5 5 
E.5 5 5 5 

NRE.1 17 17 17 
NRE.2 17 17 17 
NRE.3 17 17 17 
NRE.4 17 17 17 
NRE.5 17 17 17 
NRF.1 10 10 10 
NRF.2 11 10 10 
NRF.3 11 10 10 
NRF.4 11 10 10 
NRF.5 11 10 10 
CYC.6 60 61 60 
CYC.7 156 155 144 
CYC.8 378 377 348 
CYC.9 894 888 813 
CYC.10 2061 2063 1918 
CYC.11 4688 4677 4268 

CLR.10-4 25 26 25 
CLR.11-4 25 24 23 
CLR.12-4 23 25 23 
CLR.13-4 26 26 23 
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The second best performing heuristic is the GRASP 
algorithm without WALKSAT search. This algorithm 
uses the redundancy test as the local search phase of 
the GRASP heuristic and obtains the best known solu-
tion for 51 out of 70 instances, with a minimal running 
time increase compared to the R-Gr heuristic, which is 
the fastest algorithm. 

From the previous results, we conclude that the algo-
rithm to apply depends on the available time to solve the 
instance. When the running time is not an issue, our 
WALKSAT algorithm can be applied as it is capable of 
improving the solution of several instances, while if the 
available time is an issue and a fast result must be pro-
vided, the GRASP approach with redundancy testing is 
preferable. 

Let us note that the different parameters of the in-
stances modify the quality of the solutions found from 
our proposal. When the density of the matrix A is rela-
tively small, as instance sets 4, 5, A and C, the 
WALKSAT search usually obtains better solutions than 
the construction procedures with redundancy test. 
When the density of the matrix is high, the local search 
phase does not improve the quality of the solution, 
mostly because the quality of the solutions obtained by 
the constructive procedure plus redundancy testing are 
very near to the optimal or even optimal. 
Table III-  Running time in seconds per algorithm and instance 

set. 

Inst. Set R-Gr 
105 it. 

GRASP 
105 it. 

GRASP 
+SAT 

4 39 59 86 
5 54 94 318 
6 30 42 114 
A 83 155 545 
B 84 126 952 
C 123 230 1067 
D 136 198 2433 
E 15 17 54 

NRE 257 310 20374 
NRF 418 450 41776 
CYC 1872 2333 9111 
CLR 186 184 1475 

VI. APPLICATION OF THE ALGORITHMS TO 
DECISION SUPPORT SYSTEMS 

The applicability of the proposed procedures to real-
life circumstances is subject to their integration within 
decision support systems to aid planners in decision-
making. The software application was named SIRUS [3] 
and it was designed to assist the decision-making, de-
sign and management steps related to municipal waste 
collection in an urban area. The system simplifies the 
periodical tasks of deciding on locations of collection 
points, refuse bin distribution and routing decisions. 

SIRUS was designed to be integrated with a geo-
graphic information system. The geographical informa-

tion system makes it possible to work with CAD-like 
geographic data and link this data with databases from 
the municipality’s management systems, such as the 
census of inhabitants, taxation on economic activities 
and data relevant to traffic. 

The decision maker starts by selecting the section of 
the city where the new collection system is to be estab-
lished. The sections are usually determined by political 
concerns, different characteristics and are related to 
neighborhood divisions. The application obtains infor-
mation about the corresponding streets, their sections, 
the population present in each street section, and the 
possibility of driving in with a collection truck. The user 
may then modify the attributes of the selection so as to 
define which street sections should be covered and 
which street sections are capable of containing a collec-
tion area. 

The data is used to identify the vertices and edges of 
the graph, as well as the covering and population graph. 
Additionally, a covering distance should be specified by 
the user to represent the maximum allowable distance 
each citizen should travel to reach the nearest collection 
point. During a preprocess, the graph is discretized, the 
population that cannot be covered is identified and the 
aforementioned algorithms are executed. The results of 
the algorithm are shown graphically, see the colored 
circles in Figure 2, together with numeric data such as 
the distance separating the least favored citizen/s from 
the nearest collection point, and the identification of 
this/these group/s to indicate the precise position of the 
citizen are given to the decision makers. This data is 
available to facilitate greater detail to users and decision 
makers alike. 

The advantages offered by the use of the system or 
similar ones are significant. This type of system facili-
tates planning and programming of the garbage collec-
tion service. Indeed, it is possible to plan with ease, for 
medium and long term periods, a selective collection 
service in a municipality or in one of its zones. To do 
this, it is sufficient to simulate future scenarios for which 
population evolution and information related to urban 
planning are the basic requirements. This means that it is 
possible to design the physical collection system in a 
new urban area without having to adjust the service by 
trial and error in a populated sector of the territory. 

The application of this type of system leads to cost 
reductions and improvements in the service. The results 
offered by the system make it possible to reveal defi-
ciencies in the quality of the service, such as very long 
distances covered by citizens and overloaded garbage 
accumulation areas. They also reveal wasteful elements 
such as an excessive number of containers or garbage 
accumulation areas which are very close. Results of this 
type, which are obtained interactively and quickly with 
each modification to the design of the physical system, 
may be used for taking corrective measures with the aim 
of improving quality and better use of resources 
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VII. CONCLUSIONS 

Operations Management, Operations Research and 
Artificial Intelligence are capable of modeling and solv-
ing Selective Municipal Waste Management problems. 
One of the problems encountered in the design of selec-
tive municipal waste collection systems is treated as a 
unicost set covering problem and a novel procedure 
based on the combination of Operations Research and 
Artificial Intelligence methods is proposed. From an 
algorithmic point of view, the algorithm performs signifi-
cantly well, improving several best known solutions. 

It is important to point out that the proposed algo-
rithm should be used in combination with a Decision 
Support System to obtain an application allowing a 
methodological approach to the design of municipal 
waste management systems  and to increase the collec-
tion of recyclable products. A tool with these character-
istics facilitates the calculations performed in the deci-
sion-making step for a given management plan, which 
might not be solved in absence of such a tool.  

VIII.ACKNOWLEDGEMENTS 

This work was partly funded by Grant BEC2003-03809 
from the CYCIT and Grant TIC2002-10886E from the 
Spanish Ministry of Science and Technology. We also 
acknowledge the support given by the UPC Nissan 
Chair. 

REFERENCES  

[1] Almiñana, M., Pastor, J. T., An adaptation of SH 
heuristic to the location set covering problem, Eur J 
Oper Res 1997, 100(3):586-593 

[2] Balas, E., Carrera, M. C., A dynamic subgradient-
based branch-and-bound procedure for set covering. 
Oper Res 1996, 44(6): 875-890 

[3] Bautista J. Proyecto integral de gestión de residuos 
urbanos en el municipio de Sant Boi de Llobregat. 
Barcelona, CPDA, 2001 

[4] Bautista, J., Pereira, J. Modeling the problem of 
locating collection areas for urban waste 
management. An application to the metropolitan area 
of Barcelona. OMEGA 2006, 34(6):617-629 

[5] Bautista, J., Pereira, J. A GRASP algorithm to solve 
the unicost set covering problem. Comput. Oper. 
Res., In press. doi:10.1016/ j.cor.2005.11.026 

[6] Beasley, J.E., A Lagrangean heuristic for set 
covering problems. Nav Res Log 1990, 37(1):151-164 

[7] Beasley, J.E., OR-Library: distributing test problems 
by electronic mail, J  Oper Res Soc 1990, 41(11):1069-
1072 

[8] Beasley JE, Chu P.C., A genetic algorithm for the set 
covering problem. Eur J Oper Res 1996, 94(2):392-404 

[9] Caprara, A., Fischetti, M., Toth, P., A heuristic 
method for the set covering problem, Oper Res, 1999, 
47(5):730-743 

[10]Fisher, M.L., Kedia, P., Optimal solutions of set 
covering/partitioning problems using dual heuristics. 
Manage Sci 1990, 36(6):674-688 

[11]Garey, M. R., Johnson, D. S., Computers and 
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman & Company, 1979 

[12]Glover, F., Laguna, M., Tabu Search, Kluwer 
Academics Publishing 1997 

[13]Grossman, T, Wool, A., Computational experience 
with approximation algorithms for the set covering 
problem. Eur J Oper Res, 1997, 101(1):81-92 

[14]Gu, J., Efficient Local Search for Very Large-Scale 
Satisfiability Problems, ACM SIGART Bulletin 
1992(3):8-12 

[15]Hoos, H.H., Stutzle, T., Local search algorithms for 
SAT: An empirical evaluation, J Autom Reasoning 
2000, 24(4):421-481 

[16]Lan, G., DePuy, G.W., Whitehouse, G.E., An effec-
tive and simple heuristic for the set covering prob-
lem, Eur. J. Oper. Res., in press. 
doi:10.1016/j.ejor.2005.09.028  

[17]Lessing, L., Dumitrescu, I., Stützle, T., A comparison 
between ACO algorithms for the Set Covering 
Problem, Lecture Notes in Computer Science 2004, 
3172:1-12 

[18]Papadimitrious, C.H., Computational Complexity, 
Addison-Wesley Pub Co, 1993 

[19]Resende, M.G.C., Feo, T.A. A GRASP for 
Satisfiability, in Cliques, Coloring, and Satisfiability: 
Second DIMACS Imp lementation Challenge, 
Johnson, D.S., Trick, M.A., editors., DIMACS Series 
on Discrete Mathematics and Theoretical Computer 
Science, American Mathematical Society, 1996, 
26:499-520 

[20]Resende, M.G.C., Pitsoulis, L.S., Pardalos, P.M., 
Approximate solution of weighted MAX-SAT prob-
lems using GRASP, in Du, D., Gu, J., Pardalos, P.M., 
editors, DIMACS Series on Discrete Mathematics 
and Theoretical Computer Science Satisfiability 
problem: Theory and Applications, American 
Mathematical Society, 1997, 35:393-405 

[21]Resende, M. G. C., Ribeiro, C. C., Greedy randomized 
adaptive search procedures, in Handbook of 
Metaheuristics, F. Glover and G. Kochenberger, eds., 
Kluwer Academic Publishers, 2003, p. 219-249 

[22]Selman, B., Levesque, H., Mitchell, D., A new 
method for solving hard satisfiability problems. In 
Proceedings of the 10th National Conference on 
Artificial Intelligence, AAAI Press / The MIT Press, 
Menlo Park, CA, USA, 1992. p 440-446 

Knowledge and Decision Technologies

255



[23]Selman, B., Levesque, H., Mitchell, D., A new 
method for solving hard satisfiability problems. In 
Proceedings of the 10th National Conference on 
Artificial Intelligence, AAAI Press / The MIT Press, 
Menlo Park, CA, USA, 1992. p 440-446 

[24]Toregas, C., Swain, R., ReVelle, C., and Bergman, L., 
The Location of Emergency Service Facilities, Oper 
Res 1971, 19:1363-1373 

[25]Yagiura, M., Ibaraki, T., Efficient 2 and 3-flip 
neighborhood search algorithms for the MAX SAT: 
Experimental evaluation, J Heuristics 2001, 7(5):423-
442 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[26]Yagiura, M., Kishida, M., Ibaraki, T. , `A 3-Flip 
Neighborhood Local Search for the Set Covering 
Problem, ' Technical Report #2004-001, Department of 
Applied Mathematics and Physics, Graduate School 
of Informatics, Kyoto University, 2004  

Knowledge and Decision Technologies

256


