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Abstract 
This paper deals with the Assembly Line Balancing 
Problem considering incompatibilities between the tasks 
with the aim of, first, minimizing the number of 
workstations and, then, minimizing the cycle time for the 
minimum number of workstations. In order to solve the 
problem we propose the use of a Greedy Randomized 
Adaptive Search Procedure (GRASP) obtained from the 
application of some classic heuristics, based on priority 
rules, and a genetic algorithm that searches for the 
solution in the heuristic space. A computational 
experience is included to illustrate the performance of the 
proposed approach. 

1 Introduction 
The Assembly Line Balancing Problem (ALBP) can be 
divided into two groups, according to the classification 
proposed by Baybars [l]: Simple Assembly Line 
Balancing (SALBP) and General Assembly Line 
Balancing (GALBP). The first group determines the tasks 
assigned to a set of workstations with the same cycle time; 
each task has a deterministic duration and must be 
performed in only one of the workstations, either by 
human operators or by robots. Two goals can be 
considered in addition to the precedence relations between 
the tasks: the minimization of the number of workstations 
for a given cycle time (SALBP-1) and the minimization of 
the cycle time for a given number of workstations 
(SALBP-2). Any other variation of the problem is 
included in the second group. 
In this work, an extension of SALBP-1 is presented, 
considering incompatibilities between groups of tasks, so 
that if two tasks are incompatible they cannot be assigned 
to the same workstation. As a secondary goal, we try to 
reach the minimum cycle time once the number of 
workstations has been determined. 

*This work was partially supported by the CICYT Projects TAP98447 I 
TAF98-0494 and TAP99-0839. 

For the exact solution of the SALBP a number of different 
procedures have been applied, such as for instance, branch 
and bound [2,3], but these are only useful for low 
dimension examples because the problem is NP-hard. On 
the other hand, for the high dimension examples found in 
industry, heuristic procedures are accepted [4], both for 
SALBP-1 [5] and for SALBP-2 [6]. 

SALBP- 1 is typically solved with greedy heuristics, based 
on the application of priority rules to assign the tasks to 
the workstations. The rules consider such aspects as the 
duration of the tasks, the number of tasks after a given 
one, the constraints on the minimum number of 
workstations to fulfill the assign, etc., or even a mixture of 
these aspects. The rules are used to establish an ordered 
list with the possible tasks, so in each selection the most 
suitable task (according to the chosen rule) can be chosen. 
Usually, this type of heuristics considers only one rule that 
completely determines the sequence of tasks (except when 
the rule includes any random selection). The solutions 
obtained through this approach are acceptable, and when a 
rule considers a combination of several aspects it can even 
lead to better solutions. Nevertheless, it is not possible to 
conclude that any rule is better than the others for all the 
instances of the problem. 
Another type of heuristics, which is useful for local search 
methods, includes Hill Climbing (HC), Simulated 
Annealing (SA), Tabu Search (TS) and Genetic 
Algorithms (GA) [7]. This type of heuristics searches for 
other solutions, in a given neighborhood, beyond the 
direct solutions obtained through the previously 
mentioned greedy heuristics. Though the definition of a 
neighborhood may be general and valid for any 
combinatorial problem, knowledge of the specific 
problem is lost, unlike in the case of greedy heuristics. 
A third type of heuristics to reach good line balancing are 
Greedy Randomized Adaptive Search Procedures 
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(GRASP), which allows the introduction of random 
effects into greedy heuristics that are specially adapted to 
the problem. These procedures have already been 
successfully used for different applications in industrial 
engineering, for instance in a number of characteristic 
problems of combinatorial optimization [SI. 
In this work we proposed two different procedures that 
consider simultaneously: 

1) the main positive aspect of the first type of heuristics: 
the knowledge of SALBP given by the specific 
priority rules of the problem; 
the main positive aspect of the last two types of 
heuristics: the ability to generate a great number of 
solutions in the search space (in any combinatorial 
problem). 

In the following sections the two proposed procedures are 
introduced: in Section 2, a GRASP generated from the 
classic heuristics in the literature, and in Section 3, a 
Genetic Algorithm as a representative heuristic for local 
searches. Section 4 presents a computational analysis and 
Section 5 summarizes some conclusions of the work. 

2 )  

2 Basic Greedy Heuristics and GRASP 
Figure 1 shows the flow chart of an algorithm for the 
generation of solutions to SALBP. The schema is valid for 
both greedy heuristics and the GRASP heuristics based on 
them. 
The greedy heuristics assign the task (box 5 )  with the best 
index value, obtained from the application of priority 
rule(s) among the set of tasks compatible with the 
previously assigned tasks, the precedence relations and 
time constraints. The list of indexed tasks is generated 
(box 3) while some tasks are still to be assigned (box 1) 
and they can be assigned to the open workstation (box 2). 
In Figure 1 there are two main circuits. The first one, on 
the left, is formed when a new workstation must be 
opened in the assignment. When there are no tasks in the 
list of candidates (box 4) and not all the tasks have been 
assigned (box l),  a new station is added to the previous 
ones in the current solution (box 2)  and, for these new 
conditions, the list of candidate tasks is refreshed (box 3). 
The second circuit, on the right, updates the solution once 
a task is assigned (box 5); this involves recalculating the 
available time at the current station (box 6) and 
determining the new constraints for that station (box 7). 
A local search procedure to optimize the balancing (box 
8) can then be applied to the obtained incumbent solution 
in order to optimize the definitive solution. In the 
selection of tasks for the indexed list of candidates, at 

least one priority rule is required to define a heuristic. A 
sample of 13 basic rules, widely used in the literature, is 
presented in the Appendix. 
These main features of the classical greedy heuristics have 
been adapted in the GRASPS, random selections being 
introduced in the generation of solutions by using a 
probability distribution (updated at each task assignment). 
Usually, the list of candidate tasks is limited in order to 
enhance the probability of the most suitable candidate 
tasks. 
In our approach this probability distribution depends on 
an index resulting from the priority rule considered, so we 
call the procedure Greedy Randomize Weighted Adapti 
Search Procedure. GRWASP. 

2 Open station END 

7: Determine new 
station constraints 

time in the station 

Figure 1: Flow chart for greedy and GRASP approaches. 

3 A Genetic Algorithm as a Local Search 
Heuristic 
3.1. Neighborhoods in Local Search Methods 
Local search methods are used to explore neighborhoods 
with “neighbor solutions”, a concept than can be defined 
in different ways. One way to define neighbor solutions of 
an initial solution is by characterizing the last one by a 
sequence of elements and, then. looking for other 
solutions by changing the order of elements in the 
sequence. For instance, the assignment of tasks to a set of 
workstations can be determined by the order in which the 
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tasks must be executed, and altering the numbers in the 
sequence may lead to neighbors. The definition of 
neighborhoods is general and does not take advantage of 
th? specific information about the problem to be solved, 
but it has the advantage of being applicable to any 
problem. Thus, knowledge of the problem can be used to 
create more suitable neighbors. 

Storer [9] proposed other neighborhood definitions based 
on the relation between a heuristic h and the solution s 
obtained when h is applied to an instance of the problem 
p: h(p) = s. This relation allows the definition of 
neighborhoods both in the problem solution space and in 
the heuristic space. 
In the solution space, the neighborhood is obtained by 
taking the following steps: 1) introducing random 
perturbations in the problem data (within reasonable 
bounds); 2) applying a heuristic procedure to obtain a 
solution; and 3) evaluating the solution with the original 
data. 
In the heuristic space, two new variations on the available 
heuristics for SALBP are proposed: 
1. Definition of a new hybrid rule as a weighted linear 

combination of the original set of rules pi: 

P = m i p i  
V i  

2. Splitting the tasks to be assigned into subsets (usually 
called "windows") and using a particular rule for each 
subset. This allows the characterization of a solution 
by a vector of rules r = (pII1, p [21, ...., p where N 
is the number of tasks and P [ k ]  is the rule applied in 
the k assignment. 

Thus, from the second approach, we can conclude that, 
given a vector of rules r and a procedure A, a heuristic can 
be defined as the pair (r, A):  h = h(r, A). In this way, all 
the heuristics resulting from the composition of a vector 
of rules and the procedure shown in Figure 1 are valid. 

3.2. Application in a Genetic Algorithm 
As a result of the above considerations, a genetic 
algorithm that includes the generation of solutions in the 
heuristic space is presented below. 

Nomenclature: 

I 

L number of iterations (generations). 
p 

number of individuals (vectors of rules) in the 
population. 

instance of the problem to be solved. 

ri 

hi 
si 

population of ancestors of the sequences of rules. 
population of ancestors of the heuristics. 
population of ancestors of the solutions. 
population of descendants of the sequences of rules. 
population of descendants of the heuristics. 
population of descendants of the solutions. 
population of eligible sequences of rules for the next 
iteration (generation). 
element i of the sets n, , A , ,  A, and Q,. 
element i of the sets n h  , Ah and Ah. 

element i of the sets n,r, A., and 

Begin GA 
Phase A. Initialization 

0 Data initialization 

0.1 Generate the initial populations n, with different 
homogeneous sequences of rules: ll, ={ ri = 

0.2 Generate the initial population of heuristics: nh 

0.3 Generate the population of solutions of p and 

(PrIl.--l Pra) : Pr11' .a= Prhd 

= { hi = hi(ri4) : ri En,} 

evaluate their makespan: 
n, = { si = hi@) : hi E n h }  

0.4 Determine the fitness f i  of the elements of n, as: 

where: 

ri duration of task i 
C cycle time 
NEj 
ct 

number of stations in thej-th solution 
occupied time in the k-th station ( la5 NEj) 

0.5 Save as incumbent solution the pair (h*,s*) with 
greatest fitness 

Phase B: Iterate through the following steps L times: 

1. Selection of ancestors: 
Build 112 pairs of elements of ll, according to the 
fitness of the elements of n,. 
Choice of the pairs for the crossover: 
2.1 Determine the probability of the current 

crossover: P, = Pc(a)  with 

2.  

1 1 
a=- I ( I  -1) Z=iFZj*ihi.j 

where hiJ E {O, l  }A [ hiJ = 1 - prkl (E ri ) =PIkl 
(Erj)b"k, llkw] 

2406 

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 12:49 from IEEE Xplore.  Restrictions apply.



2.2 Assign a random number to each pair of rule 
sequences. 

2.3 Decide, for each pair of rule sequences, if a 
crossover should be performed according to the 
relation between the random number and the 
probability depending on population 
homogeneity P,. 

3.1 Crossover the selected pair of sequences of 
rules to generate two descendants, creating Ar. 

3.2 Generate A,, and A,y from Ar as was done in 0.2 
and 0.3 respectively. 

3.3 Determine the makespan of the elements of A,s. 
If any element of A,r has a better makespan than 
the incumbent solution, then save as heuristic 
and incumbent solution the pair (h*,s*) 
associated with that element. 

4.1 Determine the probability of mutation of the 
current generation: P ,  = P,(a). 

4.2 Assign a random number to each element A,. 
4.3 Decide the elements of Ar to be mutated 

according to their random number and P,. 
4.4 Mutate the chosen elements of A, creating AI.. 
4.5 Generate Ah and 

and 0.3 respectively. 
4.6 Determine the makespan of the elements of 

If any element of has a better makespan than 
the incumbent solution, then save as heuristic 
and incumbent solution the pair (h*,s*) 
associated with that element. 

5.1 Build the population of eligible elements 
Q r t n r + A r  + A r  

5.2 Determine the fitness of the elements of the 
populations A,T and As as was indicated in 0.5. 

5.3 Choose I elements from R, according to the 
fitness of the elements of l l y ,  As and A,T. 

3 Generation of descendants: 

4 Mutation of descendants: 

from Ar as was done in 0.2 

5. Regeneration of the population: 

End GA 

4 Computational analysis 

Longest Processing Time (rule l), 
Greatest Ranked Positional Weight (rule 4), 
Greatest Average Ranked Positional Weight 
(rule 5), 
Greatest Processing Time divided by Upper 
Bound (rule 8), 
Maximum Number of Successors divided by 
Slack (rule 1 l), 
Bhattcharjee & Sahu (rule 12). 

The same 6 GRASP heuristics, but revised by 
introducing a selection probability for the task 
assignment proportional to the value of the parameter 
used in the rule. For instance, the value for the first 
rule is the longest processing time. 

7 versions of the presented Genetic Algorithm, with 
different crossover and regeneration processes to 
generate solutions in the heuristic space. The 
probabilities of mutations and crossovers depend on 
the index of homogeneity in the population a, which 
is used as: P, = 1 - 0.5a for crossovers, and P, = 
0.05 + 0.95a for mutations. 

These procedures were used to solve 160 instances, 
divided into 4 groups of 40 instances with 20, 40, 60 and 
80 tasks respectively. According to the order strength of 
Mastor and the Rachamadugu ratio of incompatibility, the 
values considered were between 0.05 and 0.75. 
The results are illustrated in Figures 2 and 3. Figure 2 
shows the number of times that the heuristics found the 
best solution (minimum number of workstations) in the 
160 instances, and Figure 3 shows the ratio between the 
average of the values obtained by each procedure and the 
best obtained value. 

Regarding the minimization of the number of 
workstations, the Genetic Algorithms were clearly better 
than the greedy heuristics based on priority rules without 
any local optimization. On average, the Genetic 
Algorithms and the proposed GRWASP (revised GRASP 
with weights) procedures achieve the best results, while 
the greedy heuristics produce the worst ones. 

The computational analysis was based on the following 
heuristics: 

5 Conclusions 
13 greedy (and deterministic) heuristics, found in the 
literature, corresponding to the rules in Appendix A. In this work a new approach to SALBP with 

incompatibilities between the tasks has been proposed. It 
6 traditional GRASP heuristics selected from the 13 includes the knowledge provided by the greedy 

mentioned above. The chsen  GRASP (deterministic) heuristics of a given problem in the local 
search heuristics, such as HC, SA, TS, GA (in this paper a 
GA was presented) or in a GRASP. In this way, in the first 

heuristics were generated from the following rules: 
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case, a solution can be characterized by a sequence of 
priority rules and, in the second case, the tasks are 
randomly selected according to the value of fitness 
provided by a rule. 

Figure 2. Number of times that the heuristics 
achieved the best solution in the 160 instances. 

I la/ I .I* 

GRWASP GRASP Grady Heuristics Genetic Alg. 

Figure 3. Results obtained for the 160 instances 
with the 32 mentioned procedures; the vertical axis 
indicates the ratio between the average of the 
values obtained by each. procedure and the best 
obtained value. 

Appendix A: List’of Rules 
Nomenclature: 

i, j 
N number of tasks 
C cycle time 
ti duration of task i 
ISi 
Si 
TPi 
Li 

indices for the tasks 

set of tasks immediately after task i 
set of tasks after task i 
set of precedent tasks of i 
level of task i in the precedence graph 

Schedule the task : v(z*)=ma~i,z[v(i)] 

Name Rule 
1 .Longest Processing 
Time 
2.Greatest Number of 
Immediate Successors 
3.Greatest Number of 
Successors 
4,Greatest Ranked 
Positional Weight 
5.Greatest Average 
Ranked Positional 
Weight 
6.Smallest Upper 
Bound 
7.Smallest Upper 
Bound / Number of 
Successors 
8 .Greatest Processing 
Time / Upper Bound 
9.Smallest Lower 
Bound 
10. Minimum Slack 
1 1 Maximum Number 
Successors /Slack 
12.Bhattcharjee & 
Sahu 
13. Kilbridge di 
Wester labels 

v(i) = ti 

v(i) = I ISi I 

v(i) = I Si l  

v(i) = ti + tj GE Si) 

v(i) = (ti + C tj ( j ~  Si))  1 

( I S,I+l ) 

v(i) = -UB,= -N -1+ 

[(ti + I: 9 ( j ~  si)YCI+ 
v(i) = -UBi / ( I Si I + 1 ) 

v(i) = t i /  UBi 

v(i) = -LBi= - [(ti+ 
C 9 ( j ~  TP,)) / C 1’ 
v(i) = - (UBi - LBi) 

v(i) = I Si I / ( UBi - LBi ) 

v(i) = ti + I Si I 

v(i) = - Li 
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